Coordination of push-off and collision determine the mechanical work of step-to-step transitions when isolated from human walking.

نویسندگان

  • Caroline H Soo
  • J Maxwell Donelan
چکیده

In human walking, each transition to a new stance limb requires redirection of the center of mass (COM) velocity from one inverted pendulum arc to the next. While this can be accomplished with either negative collision work by the leading limb, positive push-off work by the trailing limb, or some combination of the two, physics-based models of step-to-step transitions predict that total positive work is minimized when the push-off and collision work are equal in magnitude. Here, we tested the importance of the coordination of push-off and collision work in determining transition work using ankle and knee joint braces to limit the ability of a leg to perform positive work on the body. To isolate transitions from other contributors to walking mechanics, participants were instructed to rock back and forth from one leg to the other, restricting motion to the sagittal plane and eliminating the need to swing the legs. We found that reduced push-off work increased the collision work required to complete the redirection of the COM velocity during each transition. A greater amount of total mechanical work was required when rocking departed from the predicted optimal coordination of step-to-step transitions, in which push-off and collision work are equal in magnitude. Our finding that transition work increases if one or both legs do not push-off with the optimal coordination may help explain the elevated metabolic cost of pathological gait irrespective of etiology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of push-off timing on metabolic cost during walking with a universal ankle-foot prosthesis emulator

1 Introduction The ankle delivers about half of the total mechanical work during walking. Lower-limb amputees using conventional passive-elastic prostheses experience 20 to 30% higher metabolic cost than able-bodied individuals, perhaps because these prostheses do not provide net positive work during the course of a step [1]. To address this problem, companies are developing battery-powered pro...

متن کامل

Mechanical and energetic consequences of reduced ankle plantar-flexion in human walking.

The human ankle produces a large burst of 'push-off' mechanical power late in the stance phase of walking, reduction of which leads to considerably poorer energy economy. It is, however, uncertain whether the energetic penalty results from poorer efficiency when the other leg joints substitute for the ankle's push-off work, or from a higher overall demand for work due to some fundamental featur...

متن کامل

Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking.

In the single stance phase of walking, center of mass motion resembles that of an inverted pendulum. Theoretically, mechanical work is not necessary for producing the pendular motion, but work is needed to redirect the center of mass velocity from one pendular arc to the next during the transition between steps. A collision model predicts a rate of negative work proportional to the fourth power...

متن کامل

Title: The Effect of Prosthetic Foot Push-off on Mechanical Loading Associated with Knee Osteoarthritis in Lower Extremity Amputees

Lower extremity amputation not only limits mobility, but also increases the risk of knee osteoarthritis of the intact limb. Dynamic walking models of non-amputees suggest that an appropriately timed push-off from the trailing limb can reduce collision forces on the leading limb. These collision forces may determine the peak knee external adduction moment (EAM), which has been linked to the deve...

متن کامل

Differentiation between solid-ankle cushioned heel and energy storage and return prosthetic foot based on step-to-step transition cost.

Decreased push-off power by the prosthetic foot and inadequate roll-over shape of the foot have been shown to increase the energy dissipated during the step-to-step transition in human walking. The aim of this study was to determine whether energy storage and return (ESAR) feet are able to reduce the mechanical energy dissipated during the step-to-step transition. Fifteen males with a unilatera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Gait & posture

دوره 35 2  شماره 

صفحات  -

تاریخ انتشار 2012